undefined

Two-point Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues

Year of publication

2020

Authors

Peyvasteh, Motahareh; Dubolazov, Alexander; Popov, Alexey; Ushenko, Alexander; Ushenko, Yuriy; Meglinski, Igor

Abstract

<p>The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues of different morphological structure. This method is based on a correlation ('two-point') generalization of traditional optical methods for analyzing 'one-point' distributions of polarization states of microscopic images of biological tissues. Analytical algorithms are obtained for describing the 'two-point' complex parameters of the Stokes vector image of a birefringent biological tissue. An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions of the magnitude and phase of the 'two-point' Stokes vector parameters. Within the framework of the statistical and correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological tissues of various morphological structures are found. A comparative analysis of the distribution of the 'single-point' and 'two-point' parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed a higher sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues compared to the single-point approach. </p>
Show more

Organizations and authors

University of Oulu

Meglinski Igor Orcid -palvelun logo

Peyvasteh Motahareh

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

53

Issue

39

Article number

395401

​Publication forum

61361

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

Other information

Fields of science

Physical sciences; Electronic, automation and communications engineering, electronics; Materials engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1088/1361-6463/ab9571

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes