undefined

Euclid preparation : XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

Year of publication

2021

Authors

Euclid Collaboration; Ilbert, O.; de la Torre, S.; Martinet, N.; Wright, A. H.; Paltani, S.; Laigle, C.; Davidzon, I.; Jullo, E.; Hildebrandt, H.; Masters, D. C.; Amara, A.; Conselice, C. J.; Andreon, S.; Auricchio, N.; Azzollini, R.; Baccigalupi, C.; Balaguera-Antolinez, A.; Baldi, M.; Balestra, A.
Show more

Abstract

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).
Show more

Organizations and authors

University of Helsinki

Kirkpatrick C. C.

Keihänen E.

Gozaliasl G.

Kurki-Suonio H.

Väliviita J.

University of Jyväskylä

Väliviita Jussi

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Parent publication name

Astronomy & Astrophysics

Volume

647

Article number

A117

​Publication forum

51953

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Physical sciences; Astronomy and space science

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

France

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1051/0004-6361/202040237

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes