undefined

Muscle‐tendon morphology and function following long‐term exposure to repeated and strenuous mechanical loading

Year of publication

2020

Authors

Bissas, Athanassios; Havenetidis, Konstantinos; Walker, Josh; Hanley, Brian; Nicholson, Gareth; Metaxas, Thomas; Christoulas, Kosmas; Cronin, Neil J.

Abstract

We mapped structural and functional characteristics of muscle‐tendon units in a population exposed to very long‐term routine overloading. Twenty‐eight military academy cadets (age: 21.00 ± 1.1 yrs; height: 176.1 ± 4.8 cm; mass: 73.8 ± 7.0 kg) exposed for over 24 months to repetitive overloading were profiled via ultrasonography with a senior subgroup of them (n = 11; age = 21.4 ± 1.0 yrs; height = 176.5 ± 4.8 cm; mass = 71.4 ± 6.6 kg) also tested while walking and marching on a treadmill. A group of eleven ethnicity‐ and aged‐matched civilians (age = 21.6 ± 0.7 yrs; height = 176.8 ± 4.3 cm; mass = 74.6 ± 5.6 kg) was also profiled and tested. Cadets and civilians exhibited similar morphology (muscle and tendon thickness and cross‐sectional area, pennation angle, fascicle length) in 26 out of 29 sites including the Achilles tendon. However, patellar tendon thickness along the entire tendon was greater (p<0.05) by a mean of 16% for the senior cadets compared with civilians. Dynamically, cadets showed significantly smaller ranges of fascicle length change and lower shortening velocity in medial gastrocnemius during walking (44.0% and 47.6%, p<0.05 ‐ 0.01) and marching (27.5% and 34.3%, p<0.05 ‐ 0.01) than civilians. Furthermore, cadets showed lower normalised soleus electrical activity during walking (22.7%, p<0.05) and marching (27.0%, p<0.05). Therefore, 24‐36 months of continuous overloading, primarily occurring under aerobic conditions, leads to more efficient neural and mechanical behaviour in the triceps surae complex, without any major macroscopic alterations in key anatomical structures.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

30

Issue

7

Pages

1151-1162

​Publication forum

66796

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Sport and fitness sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United Kingdom

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1111/sms.13669

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes