undefined

Dynamically screened vertex correction to GW

Year of publication

2020

Authors

Pavlyukh, Yaroslav; Stefanucci, Gianluca; van Leeuwen, Robert

Abstract

Diagrammatic perturbation theory is a powerful tool for the investigation of interacting many-body systems, the self-energy operator Sigma encoding all the variety of scattering processes. In the simplest scenario of correlated electrons described by the GW approximation for the electron self-energy, a particle transfers a part of its energy to neutral excitations. Higher-order (in screened Coulomb interaction W) self-energy diagrams lead to improved electron spectral functions (SFs) by taking more complicated scattering channels into account and by adding corrections to lower order self-energy terms. However, they also may lead to unphysical negative spectral functions. The resolution of this difficulty has been demonstrated in our previous works. The main idea is to represent the self-energy operator in a Fermi golden rule form which leads to a manifestly positive definite SF and allows for a very efficient numerical algorithm. So far, the method has only been applied to the three-dimensional electron gas, which is a paradigmatic system, but a rather simple one. Here we systematically extend the method to two dimensions including realistic systems such as monolayer and bilayer graphene. We focus on one of the most important vertex function effects involving the exchange of two particles in the final state. We demonstrate that it should be evaluated with the proper screening and discuss its influence on the quasiparticle properties.
Show more

Organizations and authors

University of Jyväskylä

van Leeuwen Robert Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

102

Issue

4

Article number

045121

​Publication forum

84525

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Physical sciences

Keywords

[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1103/PhysRevB.102.045121

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes