undefined

An Automatic Aggregator of Power Flexibility in Smart Buildings Using Software Based Orchestration

Year of publication

2021

Authors

Sharma, Dharmendra; Rehu, Jari; Känsälä, Klaus; Ailisto, Heikki

Abstract

This paper presents a software-based modular and hierarchical building energy management system (BEMS) to control the power consumption in sensor-equipped buildings. In addition, the need of this type of solution is also highlighted by presenting the worldwide trends of thermal energy end use in buildings and peak power problems. Buildings are critical component of smart grid environments and bottom-up BEMS solutions are need of the hour to optimize the consumption and to provide consumption side flexibility. This system is able to aggregate the controls of the all-controllable resources in building to realize its flexible power capacity. This system provides a solution for consumer to aggregate the controls of ‘behind-the-meter’ small loads in short response and provide ‘deep’ demand-side flexibility. This system is capable of discovery, status check, control and management of networked loads. The main novelty of this solution is that it can handle the heterogeneity of the installed hardware system along with time bound changes in the load device network and its scalability; resulting in low maintenance requirements after deployment. The control execution latency (including data logging) of this BEMS system for an external control signal is less than one second per connected load. In addition, the system is capable of overriding the external control signal in order to maintain consumer coziness within the comfort temperature thresholds. This system provides a way forward in future for the estimation of the energy stored in the buildings in the form of heat/temperature and use buildings as temporary batteries when electricity supply is constrained or abundant.
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Sharma Dharmendra

Ailisto Heikki

Rehu Jari

Känsälä Klaus

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal

Sensors

Volume

21

Issue

3

Article number

867

Pages

1-18

​Publication forum

67020

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Article processing fee (EUR)

1670

Year of payment for the open publication fee

2021

Other information

Fields of science

Physical sciences; Chemical sciences; Biochemistry, cell and molecular biology; Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.3390/s21030867

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes