Cell maturation influences the ability of hESC-RPE to tolerate cellular stress

Description

Abstract Background Transplantation of human pluripotent stem cell-derived retinal pigment epithelium (RPE) is an urgently needed treatment for the cure of degenerative diseases of the retina. The transplanted cells must tolerate cellular stress caused by various sources such as retinal inflammation and regain their functions rapidly after the transplantation. We have previously shown the maturation level of the cultured human embryonic stem cell-derived RPE (hESC-RPE) cells to influence for example their calcium (Ca2+) signaling properties. Yet, no comparison of the ability of hESC-RPE at different maturity levels to tolerate cellular stress has been reported. Methods Here, we analyzed the ability of the hESC-RPE populations with early (3 weeks) and late (12 weeks) maturation status to tolerate cellular stress caused by chemical cell stressors protease inhibitor (MG132) or hydrogen peroxide (H2O2). After the treatments, the functionality of the RPE cells was studied by transepithelial resistance, immunostainings of key RPE proteins, phagocytosis, mitochondrial membrane potential, Ca2+ signaling, and cytokine secretion. Results The hESC-RPE population with late maturation status consistently showed improved tolerance to cellular stress in comparison to the population with early maturity. After the treatments, the early maturation status of hESC-RPE monolayer showed impaired barrier properties. The hESC-RPE with early maturity status also exhibited reduced phagocytic and Ca2+ signaling properties, especially after MG132 treatment. Conclusions Our results suggest that due to better tolerance to cellular stress, the late maturation status of hESC-RPE population is superior compared to monolayers with early maturation status in the transplantation therapy settings.
Show more

Year of publication

2022

Type of data

Authors

Heidi Hongisto - Creator

Heli Skottman - Creator

Juhana Sorvari - Creator

Soile Nymark - Creator

Taina Viheriälä - Creator

Tanja Ilmarinen - Creator

figshare - Publisher

Project

Other information

Fields of science

Biomedicine

Language

English

Open access

Open

License

Creative Commons Attribution 4.0 International (CC BY 4.0)

Keywords

Biomedicine

Subject headings

Temporal coverage

undefined

Related to this research data