Light-driven atomic dynamics in solids and liquids – from fundamentals of optics to engineering of novel photonics technologies

Acronym

DynaLight

Description of the granted funding

This project aims at applying the mass-polariton (MP) theory of light, developed recently by the Experienced Researcher (ER) and coworkers, to experimentally discover the atomic mass density waves (MDWs) generated by light in solids and liquids. We will allso study how this new optical effect can be used to improve existing photonics technologies and to eventually engineer new photonic devices. In particular, the ER will design, simulate, and participate in experiments to probe the influence of the light-driven MDW shock waves and the resulting sound waves (SWs), thermoelastic waves (TEWs), and thermoviscoelastic waves (TVWs) in hollow optical fibers (HOFs) in the Photonic Device Physics Laboratory of Prof. Kyunghwan Oh at the Yonsei University, South Korea, and in graphene membranes (GMs) in the Photonics Group of Prof. Zhipei Sun at the Aalto University, Finland. The ER will also continue to develop the novel optomechanical continuum dynamics (OCD) model, recently introduced by the ER, for multiphysics description of the MDWs propagating in combined liquid-solid structures with the velocity of light and the accompanied sound and thermal waves propagating at the velocity of sound. The proposed research of coupled field-medium dynamics of light in photonic waveguides and graphene nanostructures provides an interesting approach to development of new photonics technologies, a viable way to new optofluidic applications, and also leads to fundamental advances in our understanding of the propagation of light in dielectrics.
Show more

Starting year

2019

End year

2021

Granted funding

189 095.04 €
Coordinator
YONSEI UNIVERSITY (KR)
Participant
YONSEI UNIVERSITY (KR)
Participant

Amount granted

189 095 €

Funder

European Union

Funding instrument

Global Fellowships

Framework programme

Horizon 2020 Framework Programme

Call

Programme part
EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (5220)
Nurturing excellence by means of cross-border and cross-sector mobility (5222)
Topic
Individual Fellowships (MSCA-IF-2018)
Call ID
H2020-MSCA-IF-2018

Other information

Funding decision number

846218

Identified topics

photonics, optics, laser