BioHybrid Optoelectronic Materials
Acronym
BiHyOMat
Description of the granted funding
BiHyOMat is an ambitious research project at the interface of chemistry, physics and biology, with the aim to produce high-end optoelectronic materials. To this end, the project will take advantage of the co-crystallization of toroidal proteins and photosensitizers into monodimensional self-assemblies by means of electrostatic interactions, being a field where the hosting group is playing a pioneer role. By means of pH, temperature and electrolyte control, different proteins and dyes will be conjugated to a wide variety of materials with different stabilities and optical properties. Peroxiredoxin, an ubiquitous protein with a wide selection of isoelectric points has been selected as protein scaffold of the columnar stacks, along with a selection of charged phthalocyanines and porphyrins playing a dual role as molecular glue and photoactive moieties. The latter group will be obtained through collaborations, commercial sources or synthesized by the candidate.The resulting materials will be thoroughly characterized by a broad selection of techniques, including cryo-TEM, SAXS and time-resolved spectroscopy. Additionally, the spectroscopic properties arising from the anisotropic array of dyes into this well-defined structure will be thoroughly explored. Furthermore, the resulting tubular arrays will be conjugated supramolecularly with magnetic nanoparticles, endowing them with magnetoresponsive behaviour. Finally, the tubular aggregates, presenting a well-defined inner pore, will be employed as nanoreactors to synthesize finely tuned rod-like nanoparticles, taking advantage of the hollow structure of the stacks.
Show moreStarting year
2018
End year
2020
Granted funding
Amount granted
191 326 €
Funder
European Union
Funding instrument
Standard EF
Framework programme
Horizon 2020 Framework Programme
Call
Programme part
EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (5220 Nurturing excellence by means of cross-border and cross-sector mobility (5222 )
Topic
Individual Fellowships (MSCA-IF-2017Call ID
H2020-MSCA-IF-2017 Other information
Funding decision number
794536
Identified topics
biomass, bioeconomy