ModeRN Approach to ocular disease treatment - Smart lipid-based nanoparticle systems for the delivery of mRNA to the ocular tissues

Acronym

LIPOmRNA

Description of the granted funding

Many severe ocular diseases lead to visual impairment and blindness in millions of patients worldwide, and the number is rapidly growing in aging populations. Most ocular diseases are still without drug treatment and the current treatments are based on the use of small molecules and protein drugs. However, poor ocular absorption and rapid elimination restrict their development and use in ophthalmology. Technology for mRNA transfer into the cornea and retina and subsequent expression of encoded proteins may open widely applicable possibilities for the treatment of ocular diseases (e.g. various retinal degenerations, uveitis) as topical eye drops or intravitreal injections. However, clinical application of mRNAs is limited by their poor in vivo stability and low cellular entry. Therefore, efficient and safe delivery systems for ocular mRNA transfer are urgently needed. Our research program aims to develop lipid-based nanoparticle (LNP) systems that are specifically tailored for mRNA delivery into the corneal, conjunctival and retinal cells. The project will address the critical anatomical and physiological barriers of ocular mRNA delivery topically and intravitreally. Chemical structure and composition of LNPs will be carefully modified to optimize mRNA delivery across ocular barriers. Smart pH-sensitive LNPs with eye specific surface moieties will be used to target ocular cells and trigger mRNA release and cytosolic delivery. Moreover, eye drop formulations will be mucoadhesive, increasing precorneal residence time, whereas intravitreal injectables will be capable of permeating in the vitreous and inner limiting membrane into the retinal cells. The representative in vitro and ex vivo test models will be used to select the most promising LNPs for versatile animal experiments. Finally, in vivo pharmacokinetics and mRNA mediated anti-VEGF responses of the delivery systems will be investigated to understand their translational potential towards clinical use.
Show more

Starting year

2023

End year

2025

Granted funding

199 694.4 €
Coordinator
UNIVERSITA DEGLI STUDI DI PADOVA (IT)
Participant

Amount granted

199 694 €

Funder

European Union

Funding instrument

HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Framework programme

Horizon Europe (HORIZON)

Call

Programme part
Marie Skłodowska-Curie Actions (MSCA) (11677)
Topic
MSCA Postdoctoral Fellowships 2022 (HORIZON-MSCA-2022-PF-01-01)
Call ID
HORIZON-MSCA-2022-PF-01

Other information

Funding decision number

101108096

Identified topics

eyes, eye diseases