Smart Synergy Mechanism between Electric Vehicle Charging and Flexibility Markets

Acronym

ChargFlex

Description of the granted funding

Rapid integration of Electric Vehicles (EVs) in the transport sector is the key to achieving the Green Deal decarbonization targets. However, EV adoption is still low for several reasons, mainly concerns about the lack of charging infrastructure from the EV drivers' view, known as range anxiety. Many studies believe deploying more public EV charging stations (EVCSs) can ease this anxiety among EV drivers. Still, EVCSs are not yet widely available due to profitability issues and putting more stress on the grid. While the growth of the EVCSs is moving slowly, the number of household charger installations is growing rapidly. However, scarce studies have investigated the potential of household chargers in providing public charging services. Further, many households are already equipped with renewables and sell the surplus energy to the grid through local flexibility markets. With renewables, household chargers can provide cheaper charging services while minimizing the negative grid impacts of EV charging. This project intends to alleviate the range anxiety in two ways. First, we will enhance the charging infrastructure availability by encouraging households to sell surplus energy to EVs through a market framework called the charging market, besides flexibility markets. We will design a coordinated bidding strategy model from the household viewpoint based on AI to maximize profit from the two markets (Work Package 1). Second, we will improve charging infrastructure accessibility by developing an AI-based charging recommendation model to guide EV drivers on when and where to get recharged (Work Package 2). Finally, we will conduct software implementation and real-time performance validation of the proposed AI-based models (Work Package 3). The complementarity between me, the host supervisor's profile, the environment provided by the host, and the secondment ensure the achievement of this timely and innovative project and the dissemination and exploitation of the results.
Show more

Starting year

2023

End year

2025

Granted funding

AARHUS UNIVERSITET (DK)
230 774.4 €
Coordinator
KUNGLIGA TEKNISKA HOEGSKOLAN (SE)
Participant

Amount granted

230 774 €

Funder

European Union

Funding instrument

HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships

Framework programme

Horizon Europe (HORIZON)

Call

Programme part
Marie Skłodowska-Curie Actions (MSCA) (11677)
Topic
MSCA Postdoctoral Fellowships 2022 (HORIZON-MSCA-2022-PF-01-01)
Call ID
HORIZON-MSCA-2022-PF-01

Other information

Funding decision number

101110096

Identified topics

energy, power