Unlocking non-equilibrium processes in resistive switching memory and selector devices (NoneqRSMSD)

Description of the granted funding

Advancements are needed to bring us to the next generation of memory technologies where computation speed meets energy efficiency in novel green-computing applications. This project aims to investigate the atomic-scale properties of resistive-switching memory materials under non-equilibrium conditions to tackle key fundamental challenges and technological issues, to obtain improved functional memory devices. Computational experiments of ion irradiation will be performed by utilizing machine-learned molecular-dynamics simulations and time-dependent density functional theory calculations to rationalize the semiconducting properties of these materials. The study will aim to unravel the origin of the nucleation mechanism in elemental chalcogenide selector devices, and optimize the switching process by tuning the structural phase of the material. The research will be carried out at the University of Turku with national (Aalto University) and international (Spain and UK) collaborations.
Show more

Starting year

2024

End year

2028

Granted funding

Konstantinos Konstantinou Orcid -palvelun logo
566 850 €

Funder

Research Council of Finland

Funding instrument

Academy research fellows

Decision maker

Scientific Council for Natural Sciences and Engineering
13.06.2024

Other information

Funding decision number

364241

Fields of science

Materials engineering

Research fields

Funktionaaliset materiaalit, puolijohteet