Digital design and robotic fabrication of biofoams for adaptive mono-material architecture
Acronym
ARCHIBIOFOAM
Description of the granted funding
The overall objective of the ARCHIBIOFOAM project is to create mono-material yet multifunctional systems for architecture through the additive fabrication of shape-changing load-bearing biofoams. Our approach integrates biobased materials science, computational metamaterial design, and robotic additive manufacturing to enable the structuring of the novel biofoam material at multiple hierarchical scales. The objectives are (i) to create 3D-printable biofoams with programmable properties at the microscale, (ii) to develop a computational design algorithm for optimal biofoam-based metamaterial structures and (iii) to develop the fabrication processes for producing components with tailored stiffness and autonomously actuating parts at an architectural scale. The objectives will be achieved by manipulating the microstructure of bubble films in the biofoam to directionally expand or contract to external stimuli such as temperature and humidity. The mesoscale geometry of the biofoam will be automatically generated by a multi-objective optimization algorithm to achieve the targeted shape changes. The computationally designed biofoam structures will have both loadbearing and shape-changing capabilities constructed at the meter scale by our new robotic additive fabrication processes. Our biobased mono-material systems will meet multiple performance criteria and eliminate the need for multi-material layered construction by leveraging the properties and geometry of materials at multiple hierarchical scales. We will engage with the AEC sector to facilitate the uptake of our new digital design and fabrication process to enable a reduction of embodied CO2 emissions through the use of alternative materials. This novel computational fabrication approach will align with global efforts to address the current climate challenge, aiming to enable biobased materials that can outperform high embodied energy construction materials while being recyclable and compostable at their end-of-life.
Show moreStarting year
2024
End year
2027
Granted funding
WOAMY OY
330 212.5 €
Participant
UNIVERSITA DEGLI STUDI DI MILANO (IT)
811 067.5 €
Participant
UNIVERSITAET STUTTGART (DE)
1 086 075 €
Participant
Amount granted
3 422 983 €
Funder
European Union
Funding instrument
HORIZON EIC Grants
Framework programme
Horizon Europe (HORIZON)
Call
Programme part
The European Innovation Council (EIC) (11739Topic
EIC Pathfinder Challenge: AEC digitalisation for a new triad of design, fabrication, and materials (HORIZON-EIC-2023-PATHFINDERCHALLENGES-01-02Call ID
HORIZON-EIC-2023-PATHFINDERCHALLENGES-01 Other information
Funding decision number
101161052
Identified topics
biomass, bioeconomy