Realizing designer quantum matter in van der Waals heterostructures
Acronym
GETREAL
Description of the granted funding
Conventional materials hosting exotic quantum phases typically have complex atomic structures, inhomogeneities from defects, impurities, and dopants making it difficult to rationally engineer their electronic properties. This can be overcome using van der Waals (vdW) heterostructures that allow an almost arbitrary selection of the heterostructure building blocks, including metals and insulators, charge-density wave systems, superconductors, magnets, correlated insulators, and ferroelectrics. In a vdW heterostructure, the layers interact only through vdW forces and can keep their intrinsic properties. However, proximity effects cause properties to “leak” between the adjacent layers and allow creating exotic quantum mechanical phases that arise from the interactions between the layers. These key features have recently made it possible to realize exotic quantum phases by design and engineer responses that do not occur in natural materials. I will now exploit these features and fabricate heterostructures using molecular-beam epitaxy (MBE) to target artificial heavy fermion heterostructures realizing unconventional superconductivity, artificial 2D multiferroic materials, and 2D quantum spin liquids. The atomic scale geometry and electronic properties of the resulting heterostructures will be characterized using low-temperature scanning tunnelling microscopy (STM) and spectroscopy (STS).
These designer heterostructures will have engineered electronic phenomena with atomically precise structures and controlled interactions. This will lead to exciting new opportunities in fundamental condensed matter physics and subsequently, in quantum devices realizing completely new functionalities. They answer the pressing need for novel quantum materials with tuneable properties to enable completely new types of approaches in quantum technologies. This will keep Europe at the forefront of the second quantum revolution and create yet unimagined future breakthrough technologies.
Show moreStarting year
2025
End year
2029
Granted funding
Coordinator
Amount granted
2 498 623 €
Funder
European Union
Funding instrument
HORIZON ERC Grants
Framework programme
Horizon Europe (HORIZON)
Call
Programme part
European Research Council (ERC) (11675Topic
ERC ADVANCED GRANTS (ERC-2023-ADGCall ID
ERC-2023-ADG Other information
Funding decision number
101142364
Identified topics
quantum computing, quantum technology