Effect of biological pretreatment on metal extraction from flotation tailings for chloride leaching
Year of publication
2018
Authors
Altinkaya, Pelin; Mäkinen, Jarno; Kinnunen, Päivi; Kolehmainen, Eero; Haapalainen, Mika; Lundström, Mari
Abstract
This study focuses on investigating the extraction of gold, copper, iron, nickel, cobalt, and zinc present in the flotation tailings. The studied sample contained iron (3.56%), copper (0.09%), and gold (0.2 ppm) as major target elements, whereas cobalt (0.04%), nickel (0.03%) and zinc (0.04%) were trace elements of interest. Primarily, bioleaching with mixed acidophilic culture was applied as a pretreatment process for the recovery of nickel, cobalt, and zinc, as well as for iron removal. The effect of solid concentration (5–12.5%) in bioleaching was investigated at pH 1.8 and the temperature was kept at 32 °C. The highest extractions of nickel, cobalt, zinc, and iron at 5% and 7.5% solid concentrations in the bioleaching experiments were 90%, 60%, 86% and 67%, respectively. Dissolution of gold and copper was not observed. The residues from bioleaching pretreatment were applied for chemical chloride leaching to extract gold and copper into the solution. In chloride leaching, the highest extractions of copper and gold were 98% and 63%, respectively. In addition, residual nickel, cobalt, and zinc were dissolved into the solution with the extraction of 99%, 80%, and 90%, respectively. In all chloride leaching experiments, the highest extractions of iron, copper, gold, nickel, cobalt, and zinc were observed with biologically pretreated feed. Alternatively, residues from bioleaching were also subjected to conventional cyanide leaching. Dissolutions of copper, nickel, cobalt and zinc were shown to be higher in chloride solution, however, 7%-unit more of gold could be extracted by cyanidation. With these findings, it appears that the combination of biological pretreatment and chloride leaching can provide a non-toxic process for improved valuable metals extraction from low-grade tailings.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
129
Pages
47-53
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Electronic, automation and communications engineering, electronics; Chemical engineering
Keywords
[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
Yes
DOI
10.1016/j.mineng.2018.09.012
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes