Photoresponse of Graphene-Gated Graphene-GaSe Heterojunction Devices
Year of publication
2018
Authors
Kim, Wonjae; Arpiainen, Sanna; Xue, Hui; Soikkeli, Miika; Qi, Mei; Sun, Zhipei; Lipsanen, Harri; Chaves, Ferney A.; Jimenez, David; Prunnila, Mika
Abstract
Because of their extraordinary physical properties, low-dimensional materials including graphene and gallium selenide (GaSe) are promising for future electronic and optoelectronic applications, particularly in transparent-flexible photodetectors. Currently, the photodetectors working at the near-infrared spectral range are highly indispensable in optical communications. However, the current photodetector architectures are typically complex, and it is normally difficult to control the architecture parameters. Here, we report graphene–GaSe heterojunction-based field-effect transistors with broadband photodetection from 730–1550 nm. Chemical-vapor-deposited graphene was employed as transparent gate and contact electrodes with tunable resistance, which enables effective photocurrent generation in the heterojunctions. The photoresponsivity was shown from 10 to 0.05 mA/W in the near-infrared region under the gate control. To understand behavior of the transistor, we analyzed the results via simulation performed using a model for the gate-tunable graphene–semiconductor heterojunction where possible Fermi level pinning effect is considered.
Show moreOrganizations and authors
VTT Technical Research Centre of Finland Ltd
Soikkeli Miika
Prunnila Mika
Arpiainen Sanna
Kim Wonjae
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Volume
1
Issue
8
Pages
3895–3902
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Other information
Fields of science
Physical sciences; Electronic, automation and communications engineering, electronics; Materials engineering; Nanotechnology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1021/acsanm.8b00684
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes