Predictable quantum efficient detector for low optical flux measurements
Year of publication
2020
Authors
Porrasmaa, Santeri; Dönsberg, Timo; Manoocheri, Farshid; Ikonen, Erkki
Abstract
The predictable quantum efficient detector (PQED) is a primary standard of optical power, which utilizes two custom-made induced-junction photodiodes that are mounted in a wedged trap configuration for the reduction of reflectance losses. PQED photodiodes of p-type and n-type were characterized for their dark current dependence on reverse bias voltage at room temperature. As simulations predict that the dark current will decrease exponentially with temperature, the temperature dependence of dark current for the n-type photodiodes was also measured. Two n-type induced-junction photodiodes were assembled inside a liquid nitrogen cryostat. The results from the dark current measurements indicate that the cooled n-type photodiodes are suitable for measuring optical fluxes in the few photon regime. A photon flux of approximately 7,000,000 photons per second was measured using the PQED at a cryogenic temperature with a relative standard uncertainty of 0.15%. The results support the utilization of the PQED as a primary standard of optical power in single and few photon applications.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
27
Issue
2
Pages
190-194
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
Other information
Fields of science
Mathematics; Physical sciences; Electronic, automation and communications engineering, electronics; Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1007/s10043-020-00580-1
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes