Leishmanicidal activity of betulin derivatives in Leishmania amazonensis; Effect on plasma and mitochondrial membrane potential, and macrophage nitric oxide and superoxide production
Year of publication
2021
Authors
Alcazar, Wilmer; Alakurtti, Sami ; Padrón-Nieves, Maritza; Tuononen, Maija-Liisa; Rodríguez, Noris; Yli-Kauhaluoma, Jari; Ponte-Sucre, Alicia
Abstract
Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. Methods: We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. Results: From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. Conclusion: Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Parent publication name
Volume
9
Issue
2
Article number
320
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Article processing fee (EUR)
1113
Other information
Fields of science
Pharmacy; Plant biology, microbiology, virology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.3390/microorganisms9020320
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes