undefined

Hybrid films from cellulose nanomaterials—properties and defined optical patterns

Year of publication

2022

Authors

Leppänen, Ilona; Hokkanen, Ari; Österberg, Monika; Vähä-Nissi, Mika; Harlin, Ali; Orelma, Hannes

Abstract

<p>Polymer composites with nanocellulose as the reinforcing agent often lack good compatibility between the two components. In this study, we have combined cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) in different ratios to create all-cellulose films consisting of entirely discrete nanocellulose objects that complement each other. Then further, by applying the controlled dissolution concept we were able to create defined optical patterns on the films. The films consisting of 50% CNCs showed equivalent mechanical and barrier properties when compared to the pure CNF film. In addition, the incorporation of CNCs enabled tuning of the films’ optical properties. To modify this film further, we prepared specific patterns on the film by controlled dissolution by impregnating the films with N-methylmorpholine-N-oxide (NMMO) followed by heat treatment and pressure. Mechanical testing and optical measurements of the patterned films showed the effect of the dissolved cellulose regions on the film properties. The controlled dissolution of the films increased the tensile strength of the films, however, the strain was decreased quite significantly. Altogether, the CNF/CNC hybrid films combine both nanomaterials’ good properties. Cellulose nanofibrils have film-forming ability and incorporation of CNCs can further tune the optical, mechanical, and barrier properties, to optimize the films for varying applications such as optical sensors and packaging materials. Graphical abstract: [Figure not available: see fulltext.]</p>
Show more

Organizations and authors

Aalto University

Österberg Monika Orcid -palvelun logo

VTT Technical Research Centre of Finland Ltd

Harlin Ali

Hokkanen Ari Orcid -palvelun logo

Orelma Hannes Orcid -palvelun logo

Leppänen Ilona Orcid -palvelun logo

Vähä-Nissi Mika

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

SPRINGER

Volume

29

Issue

16

Pages

8551-8567

​Publication forum

53222

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Chemical engineering; Materials engineering; Nanotechnology

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1007/s10570-022-04795-0

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes