Loose Coupling: An Invisible Thread in the History of Technology
Year of publication
2023
Authors
Mämmelä, Aarne; Riekki, Jukka; Kiviranta, Markku
Abstract
We present an interdisciplinary survey of the history of loosely coupled systems. We apply the presented concepts in communication networks and suggest hybrid self-organizing networks (SONs) as a universal model for future networks. Self-organizing networks can fulfill the tight requirements of future networks but are challenging to use due to their complexity and immaturity. Moreover, the lack of an externally defined goal and centralized control has resulted in many distributed self-organizing systems failing. This is because the nonlinear relationships between the system parts result in emergence, i.e., we cannot predict the behavior of the whole from the behavior of the parts. Furthermore, a set of local optima does not produce a global optimum. Hybrid SONs tackle these challenges with loose or weak coupling of interacting agents that combine centralized control for global optimization with distributed control for local optimization. In the loose centralized control of almost autonomous agents, decisions are made mostly locally with small delays. This architecture has beneficial properties such as stability, obtained by decoupling the feedback loops: vertically with time-scale separation and horizontally with interference avoidance. Applications of loose coupling include modular electronics and computer design, structured software design, and service-oriented architectures, especially for microservices. Cross-layer design for network optimization is a new reason to use loose coupling in networks to improve stability. We also summarize some recent trends and present a roadmap to the future. We expect that loose coupling will be widely used in self-organizing networks of future wireless systems.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
11
Pages
59456-59482
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
License of the self-archived publication
CC BY
Other information
Fields of science
Computer and information sciences; Electronic, automation and communications engineering, electronics
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1109/ACCESS.2023.3284685
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes