undefined

Temporal teacher with masked transformers for semi-supervised action proposal generation

Year of publication

2024

Authors

Pehlivan, Selen; Laaksonen, Jorma

Abstract

<p>By conditioning on unit-level predictions, anchor-free models for action proposal generation have displayed impressive capabilities, such as having a lightweight architecture. However, task performance depends significantly on the quality of data used in training, and most effective models have relied on human-annotated data. Semi-supervised learning, i.e., jointly training deep neural networks with a labeled dataset as well as an unlabeled dataset, has made significant progress recently. Existing works have either primarily focused on classification tasks, which may require less annotation effort, or considered anchor-based detection models. Inspired by recent advances in semi-supervised methods on anchor-free object detectors, we propose a teacher-student framework for a two-stage action detection pipeline, named Temporal Teacher with Masked Transformers (TTMT), to generate high-quality action proposals based on an anchor-free transformer model. Leveraging consistency learning as one self-training technique, the model jointly trains an anchor-free student model and a gradually progressing teacher counterpart in a mutually beneficial manner. As the core model, we design a Transformer-based anchor-free model to improve effectiveness for temporal evaluation. We integrate bi-directional masks and devise encoder-only Masked Transformers for sequences. Jointly training on boundary locations and various local snippet-based features, our model predicts via the proposed scoring function for generating proposal candidates. Experiments on the THUMOS14 and ActivityNet-1.3 benchmarks demonstrate the effectiveness of our model for temporal proposal generation task.</p>
Show more

Organizations and authors

Aalto University

Laaksonen Jorma Orcid -palvelun logo

Pehlivan Selen Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

SPRINGER

Volume

35

Issue

3

Article number

36

Pages

1-15

​Publication forum

62832

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Computer and information sciences

Keywords

[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1007/s00138-024-01521-7

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes