undefined

Automatically human action recognition (HAR) with view variation from skeleton means of adaptive transformer network (RETRACTED)

Year of publication

2023

Authors

Mehmood, Faisal; Chen, Enqing; Abbas, Touqeer; Akbar, Muhammad Azeem; Khan, Arif Ali

Abstract

Human action recognition using skeletons has become increasingly appealing to a growing number of researchers in recent years. It is particularly challenging to recognize actions when they are captured from different angles because there are so many variations in their representations. This paper proposes an automatic strategy for determining virtual observation viewpoints that are based on learning and data driven to solve the problem of view variation throughout an act. Our VA-CNN and VA-RNN networks, which use convolutional and recurrent neural networks with long short-term memory, offer an alternative to the conventional method of reorienting skeletons according to a human-defined earlier benchmark. Using the unique view adaption module, each network first identifies the best observation perspectives and then transforms the skeletons for end-to-end detection with the main classification network based on those viewpoints. The suggested view adaptive models can provide significantly more consistent virtual viewpoints using the skeletons of different perspectives. By removing views, the models allow networks to learn action-specific properties more efficiently. Furthermore, we developed a two-stream scheme (referred to as VA-fusion) that integrates the performance of two networks to obtain an improved prediction. Random rotation of skeletal sequences is used to avoid overfitting during training and improve the reliability of view adaption models. An extensive experiment demonstrates that our proposed view adaptive networks outperform existing solutions on five challenging benchmarks.
Show more

Organizations and authors

LUT University

Akbar Azeem

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Open access

Open access in the publisher’s service

No

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Computer and information sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

International co-publication

Yes

Co-publication with a company

No

DOI

10.1007/s00500-023-08008-z

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes