undefined

Self-assembly of mixed-linkage glucan hydrogels formed following EG16 digestion

Year of publication

2024

Authors

McGregor, Nicholas G.S.; Penttilä, Paavo; Pitkänen, Leena; Mohammadi, Pezhman; Vuorte, Maisa; Igarashi, Kiyohiko; Arola, Suvi

Abstract

Mixed-linkage glucans are major components of grassy cell-walls and cereal endosperm. Recently identified plant endo-β-glucanase from the EG16 family cleaves MLGs with strong specificity towards regions with at least four sequential β(1,4)-linked glucose residues. This activity yields a low molecular-weight MLG with a repeating structure of β(1,3)-linked cellotriose that gels rapidly at concentrations as low as 1.0 % w/v. To understand the gelation mechanism, we investigated the structure and behavior using rheology, microscopy, X-ray scattering, and molecular dynamics simulations. Upon digestion, the material's rheological behavior changes from typical polymeric material to a fibrillar network behavior seen for e.g. cellulose nanofibrils. Scanning electron microscopy and confocal microscopy verifies these changes in micro- and nanostructure. Small-angle X-ray scattering shows in-solution self-assembly of MLG through ~10 nm elemental structures. Wide-angle X-ray scattering data indicate that the polymer association is similar to cellulose II, with dominant scattering at d-spacing of 0.43 nm. Simulations of two interacting glucan chains show that β(1,3)-linkages prevent the formation of tight helices that form between β(1,4)-linked d-glucan chains, leading to weaker interactions and less ordered inter-chain assembly. Overall, these data indicate that digestion drives gelation not by enhancement of interactions driving self-assembly, but by elimination of unproductive interactions hindering self-assembly.
Show more

Organizations and authors

Aalto University

Pitkänen Leena Orcid -palvelun logo

Vuorte Maisa

Penttilä Paavo Orcid -palvelun logo

VTT Technical Research Centre of Finland Ltd

Mohammadi Pezhman Orcid -palvelun logo

Arola Suvi

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Elsevier

Volume

347

Article number

122703

​Publication forum

53113

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Materials engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.carbpol.2024.122703

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes