Comparison of structure and aerobic disintegration of air-laid, foam-laid and carded biobased nonwovens
Year of publication
2024
Authors
Rämö, Virpi; Raipale, Noora; Hiipakka, Marita; Kamppuri, Taina; Paunonen, Sara; Tehrani-Bagha, Ali
Abstract
<p>Composting offers a potential sustainable end-of-life pathway for nonwoven products that may aerobically disintegrate and eventually biodegrade. Enhancing the biodegradation of nonwovens typically involves incorporating biobased biodegradable fibres. This study explores how nonwoven web formation and consolidation impact aerobic disintegration in composting. Laboratory-scale air-laid, foam-laid and carded sheets (40, 60, and 100 g/m<sup>2</sup>) with 80 wt% viscose and 20 wt% polylactic acid (PLA) fibres were prepared and thermally bonded. The sheets were characterised by physical and tensile properties, air permeability, water absorption, surface morphology, pore structure and aerobic disintegration in synthetic biowaste media. The nonwoven web formation process affected sheet density and air permeability, while tensile strength and elongation showed dependency on fibre length and orientation. Over 62 days, carded nonwovens showed the highest degree of aerobic disintegration (81%–88%) followed by foam-laid (64%) and air-laid (47%) nonwovens. Scanning electron microscopy (SEM) and X-ray tomography revealed less effective bonding within the carded sheets with 38 mm mono-component PLA fibres compared to the air-laid and foam-laid sheets containing 6 mm bi-component PLA fibres. Denser thermally bonded fibre clusters in air-laid and foam-laid sheets reduced degree of aerobic disintegration. These findings highlight the significance of fibre length, bonding and sheet homogeneity in aerobic disintegration, emphasising the importance of nonwoven web formation and consolidation processes.</p>
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
19
Pages
1-15
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Other information
Fields of science
Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1177/15589250241287869
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes