Targeting oxidation sites on boreal acid sulfate soil macropore surfaces mitigates acid and metal release to recipient water streams
Year of publication
2023
Authors
Högfors-Rönnholm, Eva; Stén, Pekka; Christel, Stephan; Fröjdö, Sören; Lillhonga, Tom; Nowak, Paweł; Österholm, Peter; Dopson, Mark; Engblom, Sten
Abstract
<p>When reduced sulfidic parent sediments are oxidized, they become acid sulfate soils and discharge metal laden acidic solutions that can damage the environment, infrastructure, and human health. Consequently, methods to mitigate the effect of acid sulfate soils are a priority in affected areas. In this study, acid sulfate soil core samples, consisting of a natural network of preferential-flow soil macropores with defined macropore surfaces and inner cores of denser clay, were characterized and subjected to treatments with calcium carbonate and peat suspensions, or combinations thereof. The effects on the geochemistry and microbial communities were examined on both macropore surfaces and in inner cores. Although transport of treatment substances into the inner cores was demonstrated, no substantial effects were found on the geochemistry and microbial community that consisted of bacterial taxa commonly identified in acid mine drainage. In contrast, positive treatment effects were clearly detected on macropore surfaces and the most promising mitigation effects were detected for treatments combining calcium carbonate and peat suspensions. These treatments increased the pH of the macropore surfaces, added an electron donor in the form of peat, and significantly decreased the relative abundance of acidophilic bacterial populations while shifting the microbial community towards species typically growing at circumneutral pH values. These new environmental conditions were favorable for iron reduction that resulted in a positive effect on permeate quality. The study presents novel data regarding the important differences between acid sulfate soil macropore surfaces and inner cores, as well as their diverse biogeochemical characteristics. It further establishes that the major oxidation-reduction processes occur at the macropore surfaces, and that the combination treatment was the most effective at mitigating the negative environmental effects.</p>
Show moreOrganizations and authors
Vaasa University of Applied Sciences
Stén Pekka Matti Pellervo
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
158
Article number
105779
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Geosciences; Environmental sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.apgeochem.2023.105779
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes