Seasonal and vertical variation in canopy structure and leaf spectral properties determine the canopy reflectance of a rice field
Year of publication
2024
Authors
Liu, Weiwei; Mõttus, Matti; Gastellu-Etchegorry, Jean-Philippe; Fang, Hongliang; Atherton, Jon
Abstract
<p>Physical model simulations have been widely utilized to simulate the reflectance of vegetation canopies. Such simulations can be used to estimate key biochemical and physical vegetation parameters, such as leaf chlorophyll content (LCC), leaf area index (LAI), and leaf inclination angle (LIA) from remotely sensed data via model inversion. In simulations, field crops are typically regarded as one-dimensional (1D) vegetation canopies with constant leaf properties in the vertical direction and across the growing season. We investigated the seasonal effects of these two simplifications, 1D canopy structure, and vertically constant leaf properties, on canopy reflectance simulations in a rice field using in situ measurements and the 3D discrete anisotropic radiative transfer model (DART). We also developed a new methodology for reconstructing 3D crop canopy architecture, which was validated using measurements of gap fraction and canopy reflectance. Our results revealed that the 1D canopy assumption only holds during the early stage of the growing season, then leaf clumping affects canopy reflectance from the jointing stage onwards. Consideration of the 3D canopy structure and its seasonal variation significantly reduced the deviation between simulated and measured canopy reflectance in the green and near-infrared wavelengths when compared to the typical 1D canopy assumption and produced the closest multi-angular distribution pattern to the measurements. The vertical heterogeneity of leaf spectra affected canopy reflectance weakly during the maturation stage when senescence started from the bottom of the canopy. Consideration of seasonal and vertical variation in LIAs significantly improved the results of 1D canopy reflectance simulations, including the multi-angular distribution patterns. In contrast, the directionally-averaged clumping index (CI) only slightly improved the 1D canopy reflectance simulation. To summarize, these findings can be used to reduce the simulation bias of canopy reflectance and improve the retrieval accuracy of key vegetation parameters in crop canopies at the seasonal scale.</p>
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Parent publication name
Volume
355
Article number
110132
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
Yes
License of the self-archived publication
CC BY
Other information
Fields of science
Physical sciences; Other agricultural sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Publication country
Netherlands
Internationality of the publisher
International
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.agrformet.2024.110132
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes