undefined

Lignin nanoparticle-decorated nanocellulose cryogels as adsorbents for pharmaceutical pollutants

Year of publication

2023

Authors

Agustin, Melissa B.; Lehtonen, Mari; Kemell, Marianna; Lahtinen, Panu; Oliaei, Erfan; Mikkonen, Kirsi S.

Abstract

<p>Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.</p>
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Agustin Melissa B. Orcid -palvelun logo

Lahtinen Panu Orcid -palvelun logo

University of Helsinki

Mikkonen Kirsi S.

Lehtonen Mari

Kemell Marianna

Agustin Melissa B.

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

330

Article number

117210

​Publication forum

60305

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

License of the self-archived publication

CC BY

Other information

Fields of science

Environmental engineering; Other agricultural sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.jenvman.2022.117210

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes