undefined

Predicting Representations of Information Needs from Digital Activity Context

Year of publication

2024

Authors

Vuong, Thanh Tung; Ruotsalo, Tuukka

Abstract

nformation retrieval systems often consider search-session and immediately preceding web-browsing history as the context for predicting users’ present information needs. However, such context is only available when a user’s information needs originate from web context or when users have issued preceding queries in the search session. Here, we study the effect of more extensive context information recorded from users’ everyday digital activities by monitoring all information interacted with and communicated using personal computers. Twenty individuals were recruited for 14 days of 24/7 continuous monitoring of their digital activities, including screen contents, clicks, and operating system logs on Web and non-Web applications. Using this data, a transformer architecture is applied to model the digital activity context and predict representations of personalized information needs. Subsequently, the representations of information needs are used for query prediction, query auto-completion, selected search result prediction, and Web search re-ranking. The predictions of the models are evaluated against the ground truth data obtained from the activity recordings. The results reveal that the models accurately predict representations of information needs improving over the conventional search session and web-browsing contexts. The results indicate that the present practice for utilizing users’ contextual information is limited and can be significantly extended to achieve improved search interaction support and performance.
Show more

Organizations and authors

University of Helsinki

Vuong Thanh Tung

Ruotsalo Tuukka

LUT University

Ruotsalo Tuukka Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

​Publication forum

50141

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

Yes

License of the self-archived publication

CC BY

Other information

Fields of science

Computer and information sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

United States

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1145/3639819

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes