undefined

Data assimilation of forest status using Sentinel-2 data and a process-based model

Year of publication

2025

Authors

Minunno, Francesco; Miettinen, Jukka; Tian, Xianglin; Häme, Tuomas; Holder, Jonathan; Koivu, Kristiina; Mäkelä, Annikki

Abstract

<p>Spatially explicit information of forest status is important for obtaining more accurate predictions of C balance. Spatially explicit predictions of forest characteristics at high resolution can be obtained by Earth Observations (EO), but the accuracy of satellite-based predictions may vary significantly. Modern computational techniques, such as data assimilation (DA), allow us to improve the accuracy of predictions considering measurement uncertainties. The main objective of this work was to develop two DA frameworks that combine repeated satellite measurements (Sentinel-2) and process-based forest model predictions. For the study three tiles of 100 × 100 km<sup>2</sup> were considered, in boreal forests. One framework was used to predict forest structural variables and tree species, while the other was used to quantify the site fertility class. The reliability of the frameworks was tested using field measurements. By means of DA we combined model and satellite-based predictions improving the reliability and robustness of forest monitoring. The DA frameworks reduced the uncertainty associated with forest structural variables and mitigated the effects of biased Earth Observation predictions when errors occurred. For one tile, Sentinel-2 prediction for 2019 (s2019) of stem diameter (D) and height (H) was biased, but the errors were reduced by the DA estimation (DA2019). The root mean squared errors were reduced from 5.8 cm (s2019) to 4.5 cm (DA2019) and from 5.1 m (s2019) to 3.3 m (DA2019) for D (sd = 4.33 cm) and H (sd = 3.43 m), respectively. For the site fertility class estimation DA was less effective, because forest growth rate is low in boreal environments; long term analysis might be more informative. We showed here the potential of the DA framework implemented using medium resolution remote sensing data and a process-based forest model. Further testing of the frameworks using more RS-data acquisitions is desirable and the DA process would benefit if the error of satellite-based predictions were reduced.</p>
Show more

Organizations and authors

University of Helsinki

Mäkelä Annikki

Minunno Francesco

Holder Jonathan

Koivu Kristiina

Tian Xianglin

VTT Technical Research Centre of Finland Ltd

Miettinen Jukka

Häme Tuomas

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

363

Article number

110436

​Publication forum

50682

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Computer and information sciences; Electronic, automation and communications engineering, electronics; Forestry

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Publication country

Netherlands

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.agrformet.2025.110436

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes