undefined

Traffic-related diesel pollution particles impair the lysosomal functions of human iPSC-derived microglia

Year of publication

2025

Authors

Ohtonen, Sohvi; Jäntti, Henna; Giudice, Luca; Mohamed, Ahmed; Shakirzyanova, Anastasia; Závodná, Táňa; Belevich, Ilya; Yan, Hong; Sabogal-Guáqueta, Angélica María; Saveleva, Liudmila; Väänänen, Mari-Anna; Rillo-Albert, Ashley; Perciballi, Elisa; Ferrari, Daniela; Tervo, Minna-Mari; Gómez-Budia, Mireia; Krejčík, Zdeněk; Aakko-Saksa, Päivi; Koistinaho, Jari; Lehtonen, Šárka; Kanninen, Katja M.; Topinka, Jan; Jokitalo, Eija; Sierra, Alejandra; Schmidt, Martina; Dolga, Amalia M.; Jalava, Pasi I.; Korhonen, Paula; Malm, Tarja
Show more

Abstract

<p>Exposure to air pollution is associated with neurological diseases. Traffic is a major source of air pollution, consisting of a complex mixture of ultrafine particles, that can invade the brain and induce a microglia-mediated inflammatory response. However, the exact mechanisms of how traffic-related particles impact human microglia remain poorly understood. This study investigates the effects of diesel exhaust particles (DEPs) on human induced pluripotent stem cell-derived microglia-like cells (iMGL). We exposed iMGLs to three different DEPs and studied the impact on the iMGL transcriptome and functionality, focusing on cytokine secretion, mitochondrial respiration, lysosomal function, and phagocytosis. A20 particles were collected from a heavy-duty engine run with petroleum diesel. For A0, the same engine was run with renewable diesel. E6 was produced with a modern 2019 model diesel passenger car run with renewable diesel. RNAseq revealed activation of the cytokine storm pathway and inhibition of the autophagy pathway in iMGLs after exposure to particles derived from older diesel emission technology (A20, A0). Particles from the modern diesel engine technology (E6) did not alter microglial transcriptome after 24 h exposure. A20 and A0 exposure led to impaired lysosomal functions in iMGLs. In contrast, E6 did not cause major alterations in microglia functions. In addition, we show that response to particles is more pronounced in human iMGLs compared to mouse primary microglia. To conclude, particles from older emission technology impair phago-lysosomal functions of iMGLs, but modern alternatives with filtration do not induce drastic changes in the functionality of iMGLs.</p>
Show more

Organizations and authors

University of Helsinki

Jokitalo Eija

Belevich Ilya

Koistinaho Jari

University of Eastern Finland

Jalava Pasi Ilari

Mohamed Ahmed Mohamed Ibrahim Mohamed

Sierra Lopez Alejandra

Shakirzyanova Anastasia Orcid -palvelun logo

Jäntti Henna Johanna

Kanninen Katja Marika

Saveleva Liudmila Orcid -palvelun logo

Giudice Luca Orcid -palvelun logo

Väänänen Mari-Anna

Tervo Minna-Mari

Gomez Budia Mireia

Korhonen Paula Karoliina

Lehtonen Sarka Orcid -palvelun logo

Ohtonen Sohvi Salome

Malm Tarja Maarit

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Parent publication name

Environment International

Volume

199

Article number

109467

​Publication forum

55330

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Environmental sciences; Public health care science, environmental and occupational health

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.envint.2025.109467

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes