Improving Wood Surface Wettability through Gas-phase Ozone Treatment of Air-dry wood
Year of publication
2025
Authors
Korpela, Antti; Koso, Tetyana; Lillqvist, Kristiina; Rautkari, Lauri; Orelma, Hannes
Abstract
An increase in wood free surface energy enhances the wettability of wood surfaces, leading to better interaction with water-based coatings. This study investigated the effect of gas-phase ozonation on the wettability of spruce, thermo-modified pine, and birch woods. The effects of the treatment were evaluated by measuring the water contact angle and the Cobb value on the wood sample surfaces, and by determining the surface free energy of the wood surfaces using the Owens, Wendt, Rabel, and Kaelble (OWRK) calculation method. Furthermore, water absorption and evaporation rates were assessed through water immersion and subsequent drying of the wood samples. The results indicated that ozone treatment increased the surface energy, and especially its polar component, thus accelerating water spreading and absorption on the wood surfaces. The most probable cause of the observed effects is the formation of new carbonyl and carboxyl groups resulting from reactions of the ozone with the wood surface. The findings suggest that the ozone treatment technique can enhance spreading, absorption, and adhesion of water-based adhesives and coatings to wood surfaces. This research may facilitate the development and use of new environmentally friendly water-based adhesives and coatings. <br/><br/>
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Volume
20
Issue
1
Pages
1161-1172
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
Self-archived
Yes
Article processing fee (EUR)
1350
Year of payment for the open publication fee
2025
Other information
Fields of science
Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.15376/biores.20.1.1161-1172
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes