Towards ubiquitous video services through scalable video coding and cross-layer optimization
Year of publication
2012
Authors
Sutinen, Tiia; Vehkaperä, Janne; Piri, Esa; Uitto, Mikko
Abstract
Video content as one of the key features of future Internet services should be made ubiquitously available to users. Moreover, this should be done in a timely fashion and with adequate support for Quality of Service (QoS). Although providing the required coverage for ubiquitous video services, wireless networks, however, pose many challenges especially for QoS-sensitive video streaming due to their inadequate or varying capacity. In this article, we propose a cross-layer video adaptation solution, which may be used for optimizing network resource consumption and user experienced quality of video streaming in wireless networks; thus improving the availability of video services to mobile users. Our solution utilizes the flexibility of the Scalable Video Coding (SVC) technology and combines fast and fair Medium Access Control (MAC) layer packet scheduling with long-term application layer adaptation. The proposed solution both improves the usage of network resources by dropping video data based on its priority when the network is congested but also reduces efficiently the number of useless packet transfers in a congested network. We evaluate our solution with a simulation study under varying network congestion conditions. We find that already application layer adaptation gains over 60% less base layer losses, momentous for SVC video decodability and quality, than in the case without any adaptation. When our MAC layer scheduling is enabled, nearly a zero loss situation with respect to packet losses carrying base layers can be attained, resulting in peak-signal-to-noise ratio values very close to the original.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Volume
25
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Electronic, automation and communications engineering, electronics
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1186/1687-1499-2012-25
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes