Pipe rheology of microfibrillated cellulose suspensions
Year of publication
2020
Authors
Turpeinen, Tuomas; Jäsberg, Ari; Haavisto, Sanna; Liukkonen, Johanna; Salmela, Juha; Koponen, Antti I.
Abstract
The shear rheology of two mechanically manufactured microfibrillated cellulose (MFC) suspensions was studied in a consistency range of 0.2–2.0% with a pipe rheometer combined with ultrasound velocity profiling. The MFC suspensions behaved at all consistencies as shear thinning power law fluids. Despite their significantly different particle size, the viscous behavior of the suspensions was quantitatively similar. For both suspensions, the dependence of yield stress and the consistency index on consistency was a power law with an exponent of 2.4, similar to some pulp suspensions. The dependence of flow index on consistency was also a power law, with an exponent of − 0.36. The slip flow was very strong for both MFCs and contributed up to 95% to the flow rate. When wall shear stress exceeded two times the yield stress, slip flow caused drag reduction with consistencies higher than 0.8%. When inspecting the slip velocities of both suspensions as a function of wall shear stress scaled with the yield stress, a good data collapse was obtained. The observed similarities in the shear rheology of both the MFC suspensions and the similar behavior of some pulp fiber suspensions suggests that the shear rheology of MFC suspensions might be more universal than has previously been realized.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Chemical sciences; Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
Yes
DOI
10.1007/s10570-019-02784-4
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes