Microfibrillated Cellulose Based Barrier Coatings for Abrasive Paper Products
Year of publication
2020
Authors
Kumar, Vinay; Kenttä, Eija; Andersson, Petter; Forsström, Ulla
Abstract
Paper-based abrasive products are multilayer structures in which the first layer on the paper substrate is usually a latex barrier coating to prevent the migration of adhesive glue into the substrate. The high coat weight (10 g/m2) of latex barrier layers is a cause of environmental concerns. Hence, alternative materials that can provide the barrier function at lower coat weights are desired. In this work, microfibrillated cellulose (MFC) combined with poly(vinyl) alcohol (PVA) were explored as suitable alternatives to the current latex coatings. Barrier coating formulations containing PVA, MFC, and silica (SiO2) were developed and applied to a paper substrate using a rod coating method on a pilot scale. Coating quality and barrier performance were characterized using scanning electron microscope images, air permeance, surface roughness, water contact angle, KIT test, and oil Cobb measurements. The barrier coatings were also studied for adhesion to the subsequent coating layer. An optimal barrier function was achieved with the developed coatings at a low coat weight of ca. 3 g/m2. The adhesion of pure PVA and PVA-MFC barrier coatings to the subsequent coating layer was inadequate; however, silica addition was found to improve the adhesion.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Article processing fee (EUR)
1334
Year of payment for the open publication fee
2020
Other information
Fields of science
Chemical sciences; Materials engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
Yes
DOI
10.3390/coatings10111108
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes