Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production
Year of publication
2021
Authors
Kuivanen, Joosu; Kannisto, Matti; Mojzita, Dominik; Rischer, Heiko; Toivari, Mervi; Jäntti, Jussi
Abstract
<p>Background: Anthranilate is a platform chemical used by the industry in the synthesis of a broad range of high-value products, such as dyes, perfumes and pharmaceutical compounds. Currently anthranilate is produced via chemical synthesis from non-renewable resources. Biological synthesis would allow the use of renewable carbon sources and avoid accumulation of toxic by-products. Microorganisms produce anthranilate as an intermediate in the tryptophan biosynthetic pathway. Several prokaryotic microorganisms have been engineered to overproduce anthranilate but attempts to engineer eukaryotic microorganisms for anthranilate production are scarce. Results: We subjected Saccharomyces cerevisiae, a widely used eukaryotic production host organism, to metabolic engineering for anthranilate production. A single gene knockout was sufficient to trigger anthranilate accumulation both in minimal and SCD media and the titer could be further improved by subsequent genomic alterations. The effects of the modifications on anthranilate production depended heavily on the growth medium used. By growing an engineered strain in SCD medium an anthranilate titer of 567.9 mg l<sup>−1</sup> was obtained, which is the highest reported with an eukaryotic microorganism. Furthermore, the anthranilate biosynthetic pathway was extended by expression of anthranilic acid methyltransferase 1 from Medicago truncatula. When cultivated in YPD medium, this pathway extension enabled production of the grape flavor compound methyl anthranilate in S. cerevisiae at 414 mg l<sup>−1</sup>. Conclusions: In this study we have engineered metabolism of S. cerevisiae for improved anthranilate production. The resulting strains may serve as a basis for development of efficient production host organisms for anthranilate-derived compounds. In order to demonstrate suitability of the engineered S. cerevisiae strains for production of such compounds, we successfully extended the anthranilate biosynthesis pathway to synthesis of methyl anthranilate.</p>
Show moreOrganizations and authors
VTT Technical Research Centre of Finland Ltd
Mojzita Dominik
Kuivanen Joosu
Kannisto Matti
Toivari Mervi
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
20
Issue
1
Article number
34
ISSN
Publication forum
Publication forum level
1
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Article processing fee (EUR)
2040
Year of payment for the open publication fee
2021
Other information
Fields of science
Chemical engineering; Industrial biotechnology; Agricultural biotechnology; Plant biology, microbiology, virology
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.1186/s12934-021-01532-3
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes