undefined

Analysis of the OECD/NEA SFR benchmark with ants reduced-order nodal diffusion solver and the serpent Monte Carlo code

Year of publication

2020

Authors

Szogradi, Marton

Abstract

<p>In order to meet modern industrial and scientific demands the Kraken multi-physics platform's development was recently launched at VTT Technical Research Centre of Finland. The neutronic solver of the framework consists of two calculation chains, providing full core solutions by the Serpent high fidelity code (1) and the AFEN/FENM-based reduced-order diffusion solver called Ants (2) capable of handling square and hexagonal geometries in steady-state. Present work introduces the simulation of a large 3600 MWth Sodium-cooled Fast Reactor (SFR) described within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS) of OECD. Full-core 3D results were obtained by Serpent for carbide- and oxide-fuel cores, moreover group constants were generated for Ants utilizing 2D super-cell and single assembly infinite lattice models of Serpent. The continuous-energy Monte Carlo method provided the reference results for the verification of the reduced-order method. Implementing the spatially homogenized properties, 3D solutions were obtained by Ants as well for both core configurations. Comparison was made between the various core designs and codes based on reactivity feedbacks (Doppler constant, sodium voiding, control rod worth) considering power distributions. Regarding reactivity sensitivity on geometry, axial fuel- and radial core expansion coefficients were evaluated as well.</p>
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Conference

Article type

Other article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A4 Article in conference proceedings

Publication channel information

Volume

247

Pages

846-854

​Publication forum

76808

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Materials engineering

Keywords

[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1051/epjconf/202124704021

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes