undefined

Weakening of the Gram-negative bacterial outer membrane: A tool for increasing microbiological safety: Dissertation

Year of publication

2007

Authors

Alakomi, Hanna-Leena

Abstract

Gram-negative bacteria are harmful in various surroundings. In the food industy their metabolites are a potential cause of spoilage and this group also includes many severe or potential pathogens. Due to their ability to produce biofilms Gram-negative bacteria also cause problems in many industrial processes as well as in clinical surroundings. Control of Gram-negative bacteria is hampered by the outer membrane (OM) in the outermost layer of the cells. This layer is an intrinsic barrier for many hydrophobic agents and macromolecules. Permeabilizers are compounds that weaken the OM and can thus increase the activity of antimicrobials by facilitating entry into the cells of external substances capable of inhibiting or destroying cellular funcions. The work described in this thesis demonstrates that lactic acid acts as a permeabilizer and destabilizes the OM of Gram-negative bacteria. In addition, organic acids present in berries, i.e. malic, sorbic and benzoic acids, were shown to weaken the OM of Gram-negative bacteria. Microbial colonic degradation products of plant-derived phenolic compounds (e.g. 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3,4-dihydroxyphenylpropionic acid, 4 hydroxyphenylpropionic acid and 3 hydroxyphenylpropionic acid) efficiently destabilized OM of Salmonella. The studies increase our understanding of the mechanism of action of the classical chelator, ethylenediaminetetraacetic acid (EDTA). In addition, the results indicate that the biocidic activity of benzalkonium chloride against Pseudomonas can be increased by combined use with polyethylenimine (PEI). In addition to PEI, several other potential permeabilizers, such as succimer, were shown to destabilize the OM of Gram-negative bacteria. Furthermore, combination of the results obtained from various permeability assays (e.g. uptake of a hydrophobic probe, sensitization to hydrophobic antibiotics and detergents, release of lipopolysaccharide (LPS) and LPS-specific fatty acids) and atomic force microscopy (AFM) image results increases our knowledge of the action of permeabilizers.
Show more

Organizations and authors

Publication type

Publication format

Monograph

Audience

Scientific

MINEDU's publication type classification code

G5 Doctoral dissertation (articles)

Publication channel information

Journal/Series

VTT Publications

Publisher

VTT Technical Research Centre of Finland

Open access

Open access in the publisher’s service

Yes

License of the publisher’s version

Other license

Self-archived

No

Other information

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

No

Co-publication with a company

No

The publication is included in the Ministry of Education and Culture’s Publication data collection

No