Mass imbalance compensation of rotor with adaptive finite-impulse-response filter and convergent control
Year of publication
2003
Authors
Tammi, Kari
Abstract
This work introduces two principles to compensate a deterministic excitation from a system: adaptive finite impulse-response-filter and convergent control. Both principles work as adaptive feedforward compensation algorithms by feeding a compensation signal into the system. The compensation signal is generated from a reference signal that is correlated with the excitation to be compensated. The difference between the principles is the algorithm to derive the compensation signal from the reference signal. These algorithms are reported in the work. The methods were compared with simulations by compensating a sinusoidal disturbance in a simple plant. The convergent control algorithm indicated smoother but slower convergence than the adaptive finite impulse-response-filter with least-mean-square algorithm. The convergent control was also tested in the rotor test environment. The displacement responses of the test rotor were measured when the convergent control was switched on. The measurements were carried out when the rotor was running 25 Hz, 40 Hz, and 65 Hz. The control force commands were also recorded at these speeds. The displacement response was also measured during a sweep from 11 Hz to 65 Hz. The convergent control was found working properly; the convergence of the algorithm was particularly fast. The performance of the algorithm may be improved by improving the quality of the compensation signal. The forces used for control were low: from 1 N to 3 N. The parameter update seemed to have an effect on response; the response was slightly amplified at the update frequency.
Show moreOrganizations and authors
VTT Technical Research Centre of Finland Ltd
Tammi Kari
Publication type
Publication format
Monograph
Audience
Professional
MINEDU's publication type classification code
D4 Published development or research report or study
Publication channel information
Journal/Series
VTT Tuotteet ja tuotanto. Tutkimusraportti
Publisher
VTT Technical Research Centre of Finland
Issue
BTUO57-031122
Open access
Open access in the publisher’s service
Yes
License of the publisher’s version
Other license
Self-archived
No
Other information
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
No
The publication is included in the Ministry of Education and Culture’s Publication data collection
No