Improved Fire Retardancy of Cellulose Fibres via Deposition of Nitrogen-Modified Biopolyphenols
Year of publication
2022
Authors
Pöhler, Tiina; Widsten, Petri; Hakkarainen, Tuula
Abstract
Driven by concerns over the health and environmental impacts of currently used fire retardants (FRs), recent years have seen strong demand for alternative safer and sustainable bio-based FRs. In this paper, we evaluated the potential of nitrogen-modified biopolyphenols as FRs for cellulosic natural fibres that could be used in low-density cellulose insulations. We describe the preparation and characterisation of nitrogen-modified lignin and tannin containing over 10% nitrogen as well as the treatment of cellulose pulp fibres with combinations of lignin or tannin and adsorption-enhancing retention aids. Combining lignin or tannin with a mixture of commercial bio-based flocculant (cationised tannin) and anionic retention chemical allowed for a nearly fourfold increase in lignin adsorption onto cellulosic pulp. The nitrogen-modified biopolyphenols showed significant improvement in heat release parameters in micro-scale combustion calorimetry (MCC) testing compared with their unmodified counterparts. Moreover, the adsorption of nitrogen-modified lignin or tannin onto cellulose fibres decreased the maximum heat release rate and total heat release compared with cellulose reference by 15–23%. A further positive finding was that the temperature at the peak heat release rate did not change. These results show the potential of nitrogen-modified biopolyphenols to improve fire-retarding properties of cellulosic products.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Article processing fee (EUR)
2005
Year of payment for the open publication fee
2022
Other information
Fields of science
Chemical sciences
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Language
English
International co-publication
No
Co-publication with a company
No
DOI
10.3390/molecules27123741
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes