undefined

Spectral invariants in ultra-high spatial resolution hyperspectral images

Year of publication

2022

Authors

Ihalainen, Olli; Mõttus, Matti

Abstract

Current operational optical satellite-based Earth observation methods targeting at vegetation are optimised for the high- and medium-resolution satellites with pixels sizes starting at ten meters. This resolution is coarser than the typical size of a vegetation structural element, such as a tree crown, and much coarser that of scattering elements, such as leaves. For this reason, vegetation can be treated as a continuous medium and the variation in the local illumination conditions on individual leaves or tree crowns can be ignored. This does not hold anymore for very and ultra-high resolution imagery, obtained from new satellite systems or unmanned aerial vehicles, where individual tree crowns or even leaves can be discerned. We tested the applicability of the spectral invariant theory to this type of imagery for characterising the local illumination conditions on plant leaves using Monte Carlo ray tracing simulations. The simulations corroborated the direct link between the spectral invariant parameter and the sunlit fraction of visible leaves, earlier alleged for hyperspectral remote sensing data based on mathematical considerations. The approach allowed us to separate the direct beam and multiple scattering irradiance components and provided intuitive interpretations of the recollision probability and canopy scattering coefficient computed for each image pixel.
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Mõttus Matti Orcid -palvelun logo

Ihalainen Olli Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

288

Article number

108265

​Publication forum

61499

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

No

Co-publication with a company

No

DOI

10.1016/j.jqsrt.2022.108265

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes