undefined

Photonic and Optomechanical Thermometry

Year of publication

2022

Authors

Briant, Tristan; Krenek, Stephen; Cupertino, Andrea; Loubar, Ferhat; Braive, Rémy; Weituschat, Lukas; Ramos, Daniel; Martin, Maria Jose; Postigo, Pablo A.; Casas, Alberto; Eisermann, Réne; Schmid, Daniel; Tabandeh, Shahin; Hahtela, Ossi; Pourjamal, Sara; Kozlova, Olga; Kroker, Stefanie; Dickmann, Walter; Zimmermann, Lars; Winzer, Georg; Martel, Théo; Steeneken, Peter G.; Norte, Richard A.; Briaudeau, Stéphan
Show more

Abstract

Temperature is one of the most relevant physical quantities that affects almost all processes in nature. However, the realization of accurate temperature standards using current temperature references, like the triple point of water, is difficult due to the requirements on material purity and stability of the environment. In addition, in harsh environments, current temperature sensors with electrical readout, like platinum resistors, are difficult to implement, urging the development of optical temperature sensors. In 2018, the European consortium Photoquant, consisting of metrological institutes and academic partners, started investigating new temperature standards for self-calibrated, embedded optomechanical sensor applications, as well as optimised high resolution and high reliability photonic sensors, to measure temperature at the nano and meso-scales and as a possible replacement for the standard platinum resistant thermometers. This article presents an overview of the results obtained with sensor prototypes that exploit photonic and optomechanical techniques for sensing temperatures over a large temperature range (5 K to 300 K). Different concepts are demonstrated, including ring resonators, ladder-like resonators and suspended membrane optomechanical thermometers, highlighting initial performance and challenges, like self-heating that need to be overcome to realize photonic and optomechanical thermometry applications.
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Hahtela Ossi

Pourjamal Sara Orcid -palvelun logo

Tabandeh Shahin

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Optics

Volume

3

Issue

2

Pages

159-176

​Publication forum

90976

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Fully open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.3390/opt3020017

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes