undefined

Effect of thermal aging on microstructure and carbides of SA508/Alloy 52 dissimilar metal weld

Year of publication

2023

Authors

Ge, Yanling; Que, Zaiqing; Lindgren, K.; Hytönen, Noora; Thuvander, M.

Abstract

A narrow-gap SA508/Alloy 52 dissimilar metal weld (DMW) mock-up, fully representative of an actual nuclear component, was investigated in this work. The microstructure and carbides formed in the low alloy steel fusion boundary (FB) and heat affected zone (HAZ) can act as brittle fracture initiators and could influence the brittle fracture behavior. However, the amount of information available in the open literature on the microstructural changes and carbide formation in DMW occurring upon post-weld heat treatment and long-term thermal aging is very limited. The microstructure and carbide type, morphology and size in the carbide precipitation zone (CPZ, up to 1.5 μm from FB), carbon depletion zone (CDZ, up to 40–50 μm from FB) and HAZ (up to 2 mm from FB) of the plant-relevant DMW in post-weld heat-treated and thermally-aged (400 °C for 15,000 h, corresponding to 90 years of operation) conditions were analyzed with analytical electron microscopy, wide-angle X-ray scattering and atom probe tomography. Long-term thermal aging increases the microhardness peak close to the FB, triples the width of the CPZ and coarsens the carbide size in the HAZ (up to a magnitude). There is no evidence of a significant phosphorus segregation to grain boundaries due to thermal aging.
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Hytönen Noora Orcid -palvelun logo

Ge Yanling Orcid -palvelun logo

Que Zaiqing

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

200

Article number

112880

​Publication forum

62979

​Publication forum level

1

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Materials engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.matchar.2023.112880

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes