undefined

Chromium-based bcc-superalloys strengthened by iron supplements

Year of publication

2023

Authors

Ma, Kan; Blackburn, Thomas; Magnussen, Johan P.; Kerbstadt, Michael; Ferreirós, Pedro A.; Pinomaa, Tatu; Hofer, Christina; Hopkinson, David G.; Day, Sarah J.; Bagot, Paul A.J.; Moody, Michael P.; Galetz, Mathias C.; Knowles, Alexander J.

Abstract

Chromium alloys are being considered for next-generation concentrated solar power applications operating > 800 °C. Cr offers advantages in melting point, cost, and oxidation resistance. However, improvements in mechanical performance are needed. Here, Cr-based body-centred-cubic (bcc) alloys of the type Cr(Fe)-NiAl are investigated, leading to ‘bcc-superalloys’ comprising a bcc-Cr(Fe) matrix (β) strengthened by ordered-bcc NiAl intermetallic precipitates (β’), with iron additions to tailor the precipitate volume fraction and mechanical properties at high temperatures. Computational design using CALculation of PHAse Diagram (CALPHAD) predicts that Fe increases the solubility of Ni and Al, increasing precipitate volume fraction, which is validated experimentally. Nano-scale, highly-coherent B2-NiAl precipitates with lattice misfit ∼ 0.1% are formed in the Cr(Fe) matrix. The Cr(Fe)-NiAl A2-B2 alloys show remarkably low coarsening rate (∼102 nm3/h at 1000 °C), outperforming ferritic-superalloys, cobalt- and nickel-based superalloys. Low interfacial energies of ∼ 40/20 mJ/m2 at 1000/1200 °C are determined based on the coarsening kinetics. The low coarsening rates are principally attributed to the low solubility of Ni and Al in the Cr matrix. The alloys show high compressive yield strength of ∼320 MPa at 1000 °C. The Fe-modified alloy exhibits resistance to age softening, related to the low coarsening rate as well as the relatively stable Orowan strengthening as a function of precipitate radius. Microstructure tailoring with Fe additions offers a new design route to improve the balance of properties in “Cr-superalloys”, accelerating their development as a new class of high-temperature materials.
Show more

Organizations and authors

VTT Technical Research Centre of Finland Ltd

Ferreirós Pedro A. Orcid -palvelun logo

Pinomaa Tatu Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Journal/Series

Acta Materialia

Volume

257

Article number

119183

​Publication forum

50285

​Publication forum level

3

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.actamat.2023.119183

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes