undefined

Deciphering the binding site and mechanism of new methylene blue with serum albumins: A multispectroscopic and computational investigation

Year of publication

2023

Authors

Perumal Manivel; Parthiban Marimuthu; Malaichamy Ilanchelian

Abstract

<p>Herein, the interaction mechanism of new methylene blue (NMB) with human serum albumin (HSA) and bovine serum albumin (BSA) was carefully investigated both experimentally and conceptually, employing experimental and insilico analysis. The steady-state emission spectral studies showed that the emission intensity of HSA and BSA was quenched significantly by NMB. The findings of the Stern-Volmer and double logarithmic plot revealed that the observed emission quenching process was through a static quenching mechanism and the measured binding constant values (K b) for HSA-NMB and BSA-NMB are 2.766 and 1.187 × 10 5 dm 3 mol -1 respectively. The time-resolved fluorescence lifetime measurement and UV-vis absorption investigation further verify the complex formation between NMB and HSA/BSA. The assessment of thermodynamic parameters disclosed the binding process was spontaneous driven by hydrogen bonds (H-bond) and van der Waals interactions, which contributed a significant role in the complexation. Moreover, the secondary structural conformation and microenvironment of HSA/BSA were modified in the presence of NMB, as evidenced by circular dichroism and synchronous fluorescence data. Molecular docking study predicted a plausible binding mode of NMB inside the binding pocket of HSA and BSA. These results demonstrated that the stabilized NMB is found at the Subdomain IIA (site I) of both the proteins and the results were correlated well with the competitive binding assay. Additionally, the principal components analysis revealed less variation of docked poses for HSA, while, more dispersed docked poses were observed for the BSA model. This also highlights the effects of docking towards a modeled protein (BSA). Molecular dynamic (MD) simulation based binding free energy (ΔG mmgbsa) estimation obtained at 298, 303, 308 and 313 K, were in good agreement with our experimental (ΔG bind) values. </p>
Show more

Organizations and authors

Åbo Akademi University

Marimuthu Parthiban Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

300

​Publication forum

67488

​Publication forum level

1

Open access

Open access in the publisher’s service

No

Self-archived

Yes

Other information

Fields of science

Biochemistry, cell and molecular biology

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.saa.2023.122900

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes