Horseshoe Priors for Edge-Preserving Linear Bayesian Inversion
Year of publication
2023
Authors
Uribe Felipe; Dong Yiqiu; Hansen Per Christian
Abstract
In many large-scale inverse problems, such as computed tomography and image deblurring, characterization of sharp edges in the solution is desired. Within the Bayesian approach to inverse problems, edge-preservation is often achieved using Markov random field priors based on heavy-tailed distributions. Another strategy, popular in sparse statistical modeling, is the application of hierarchical shrinkage priors. An advantage of this formulation lies in expressing the prior as a conditionally Gaussian distribution depending on global and local hyperparameters which are endowed with heavy-tailed hyperpriors. In this work, we revisit the shrinkage horseshoe prior and introduce its formulation for edge-preserving settings. We discuss a Gibbs sampling framework to solve the resulting hierarchical formulation of the Bayesian inverse problem. In particular, one of the conditional distributions is high-dimensional Gaussian, and the rest are derived in closed form by using a scale mixture representation of the heavy-tailed hyperpriors. Applications from imaging science show that our computational procedure is able to compute sharp edge-preserving posterior point estimates with reduced uncertainty.
Show moreOrganizations and authors
LUT University
Uribe Felipe
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Volume
45
Issue
3
ISSN
Publication forum
Publication forum level
3
Open access
Open access in the publisher’s service
No
Self-archived
Yes
Other information
Fields of science
Mathematics; Statistics and probability
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
International co-publication
Yes
Co-publication with a company
No
DOI
10.1137/22M1510364
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes