undefined

Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass

Year of publication

2024

Authors

Choi, Bohyun; Tafur Rangel, Albert; Kerkhoven, Eduard J.; Nygård, Yvonne

Abstract

<p>Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.</p>
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

84

Pages

23-33

​Publication forum

63262

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Chemical sciences

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.ymben.2024.05.003

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes