Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor
Year of publication
2023
Authors
He, Ting; Li, Xiao; Iacovelli, Riccardo; Hackl, Thomas; Haslinger, Kristina
Abstract
<p>The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40.</p>
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Volume
9
Issue
7
Article number
704
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Fully open publication channel
License of the publisher’s version
CC BY
Self-archived
No
Other information
Fields of science
Biochemistry, cell and molecular biology
Language
English
International co-publication
Yes
Co-publication with a company
No
DOI
10.3390/jof9070704
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes