undefined

Production of boric acid by bipolar membrane electrodialysis: Evaluation of commercial and polyelectrolyte multilayers-coated ion exchange membranes

Year of publication

2025

Authors

Figueira Mariana; Reig Mònica; Luis Cortina José; Reza Moradi Mohammad; Pihlajamäki Arto; Valderrama César

Abstract

Boron is an essential element for many industrial sectors, but the European Union (EU) is entirely dependent on imports for its boron supply. To ensure a sustainable supply of boron for the EU, developing recovery strategies from secondary sources is essential. Thus, boron recovery from seawater reverse osmosis (SWRO) desalination brines using bipolar membrane electrodialysis (BMED) as part of a multi-mineral brine mining process is proposed. BMED experiments were conducted with 35 triplets of commercial membranes (100 cm2), using sodium borate solution (92.5 mM) as feed, at three different pHs (2, 9 and 12), identifying pH 12 as the best option. Moreover, commercial ion exchange membranes from PCA GmbH and Mega a.s. were coated with polyelectrolyte multilayers using layer-by-layer technique. Characterization of the coated membranes included zeta potential, contact angle, ATR-FTIR, transport number and ion exchange capacity analyses. Subsequent BMED experiments with three triplets comparing virgin and modified membranes (100 cm2), using sodium borate solution (92.5 mM) as feed, demonstrated that the coating with 4 bilayers increased the selectivity of membranes. Although the coated RALEX membranes presented the highest selectivity (7.2 for B(OH)4-/Na+ in the acid compartment), uncoated PCA membranes were the optimal choice for H3BO3 and NaOH production due to higher Na and B removal (97 %), higher concentration factors (2.5 for the acid and 4.3 for the base), and higher current efficiency for H3BO3 production (78 %).
Show more

Organizations and authors

LUT University

Pihlajamäki Arto Orcid -palvelun logo

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Publisher

Elsevier

Volume

354

Issue

Part 8

Article number

129467

​Publication forum

67026

​Publication forum level

2

Open access

Open access in the publisher’s service

No

Open access of publication channel

Partially open publication channel

Self-archived

Yes

Other information

Fields of science

Chemical engineering

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object]

Internationality of the publisher

International

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.seppur.2024.129467

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes