Production of boric acid by bipolar membrane electrodialysis: Evaluation of commercial and polyelectrolyte multilayers-coated ion exchange membranes
Year of publication
2025
Authors
Figueira Mariana; Reig Mònica; Luis Cortina José; Reza Moradi Mohammad; Pihlajamäki Arto; Valderrama César
Abstract
Boron is an essential element for many industrial sectors, but the European Union (EU) is entirely dependent on imports for its boron supply. To ensure a sustainable supply of boron for the EU, developing recovery strategies from secondary sources is essential. Thus, boron recovery from seawater reverse osmosis (SWRO) desalination brines using bipolar membrane electrodialysis (BMED) as part of a multi-mineral brine mining process is proposed. BMED experiments were conducted with 35 triplets of commercial membranes (100 cm2), using sodium borate solution (92.5 mM) as feed, at three different pHs (2, 9 and 12), identifying pH 12 as the best option. Moreover, commercial ion exchange membranes from PCA GmbH and Mega a.s. were coated with polyelectrolyte multilayers using layer-by-layer technique. Characterization of the coated membranes included zeta potential, contact angle, ATR-FTIR, transport number and ion exchange capacity analyses. Subsequent BMED experiments with three triplets comparing virgin and modified membranes (100 cm2), using sodium borate solution (92.5 mM) as feed, demonstrated that the coating with 4 bilayers increased the selectivity of membranes. Although the coated RALEX membranes presented the highest selectivity (7.2 for B(OH)4-/Na+ in the acid compartment), uncoated PCA membranes were the optimal choice for H3BO3 and NaOH production due to higher Na and B removal (97 %), higher concentration factors (2.5 for the acid and 4.3 for the base), and higher current efficiency for H3BO3 production (78 %).
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
354
Issue
Part 8
Article number
129467
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
No
Open access of publication channel
Partially open publication channel
Self-archived
Yes
Other information
Fields of science
Chemical engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.seppur.2024.129467
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes