undefined

Portable multiplexed ion-selective sensor for long-term and continuous irrigation water quality monitoring

Year of publication

2024

Authors

Abdollahzadeh, Mojtaba; Zhu, Yujie; Bayatsarmadi, Bita; Vepsäläinen, Mikko; Razmjou, Amir; Murugappan, Krishnan; Rodopoulos, Theo; Asadnia, Mohsen

Abstract

In agricultural contexts, the demand for continuous and precise measurement of multiple ions is crucial. While arrays of solid-contact ion-selective electrodes (SCEs) have been developed previously, there has been limited emphasis on their continuous and long-term monitoring of ions. Addressing this gap, our work introduces an innovative sensor array utilizing Ni-HAB MOF as an ion-to-electron transducer, enabling real-time detection of nitrate, potassium, and pH levels. The sensors exhibit exceptional stability, eliminating the need for frequent recalibration. For instance, the K+-selective sensor displays an unprecedentedly low potential drift of 0.05 µV/h, surpassing existing solid-contact sensors by two orders of magnitude. Similarly, the pH sensor demonstrates a drift of 0.3 µV/h, outperforming competitors by a factor of 100. The NO3--selective sensor shows minimal drift at 0.5 µV/h, surpassing comparable sensors by a factor of ten. Additionally, the K+-selective sensor features a sensitivity of 57.8 mV/dec and a LOD of 1.9 µM, while the NO3--selective sensor offers a sensitivity of 56.8 mV/dec and a LOD of 6.23 µM. Integrated into a portable array with wireless data transmission, this system enables real-time water quality monitoring in remote areas. Rigorous testing of the developed sensor array in a tailored complex agricultural solution confirms its selective response to target ions even in the presence of interfering ions. Importantly, pH fluctuations do not compromise the precision of the K+ and NO3-- selective sensors, highlighting the system's robustness in real-world agricultural settings.
Show more

Organizations and authors

Publication type

Publication format

Article

Parent publication type

Journal

Article type

Original article

Audience

Scientific

Peer-reviewed

Peer-Reviewed

MINEDU's publication type classification code

A1 Journal article (refereed), original research

Publication channel information

Volume

227

Article number

109455

​Publication forum

53968

​Publication forum level

2

Open access

Open access in the publisher’s service

Yes

Open access of publication channel

Partially open publication channel

License of the publisher’s version

CC BY

Self-archived

No

Other information

Fields of science

Electronic, automation and communications engineering, electronics

Keywords

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Language

English

International co-publication

Yes

Co-publication with a company

No

DOI

10.1016/j.compag.2024.109455

The publication is included in the Ministry of Education and Culture’s Publication data collection

Yes