Dynamic inversion and optimal tracking control on the ball-plate system based on a linearized nonholonomic multibody model
Year of publication
2024
Authors
Garcia-Agundez Blanco Alfonso; Saccon Alessandro; Garcia-Vallejo Daniel; Freire Emilio
Abstract
This paper addresses the optimal control of the ball-plate system, a well-known nonholonomic system in the context of nonprehensile manipulation, using a multibody dynamics approach. The trajectory tracking control of a steady-state circular motion of the ball on the plate, for any radius and potentially off-centric with respect to the plate’s pivoting point, is achieved by designing a Linear-Quadratic Regulator. A spatial multibody model of the ball-plate system is considered. A key contribution is the analytical computation of the circular steady motion of the ball by dynamic inversion, including the control actions to achieve this reference solution. This enables the analytical computation of the linearized equations along this reference motion, resulting in a periodic linear time-varying (LTV) system, and the application of linear controllability criteria for LTV systems. A controllable linear system, involving the Cartesian coordinates of the contact point and the yaw angle of the sphere, is obtained using a convenient coordinate partition in the linearization. Compared to existing results on the same problem, closed-loop stability about the desired trajectory is achieved for any radius of the circular trajectory.
Show moreOrganizations and authors
LUT University
Garcia-Agundez Blanco Alfonso
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal/Series
Publisher
Volume
203
Article number
105795
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
No
Other information
Fields of science
Mechanical engineering
Keywords
[object Object],[object Object],[object Object],[object Object],[object Object]
Internationality of the publisher
International
International co-publication
Yes
Co-publication with a company
No
DOI
10.1016/j.mechmachtheory.2024.105795
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes