Monte Carlo tree search control scheme for multibody dynamics applications
Year of publication
2024
Authors
Tang Yixuan; Orzechowski Grzegorz; Prokop Aleš; Mikkola Aki
Abstract
There is considerable interest in applying reinforcement learning (RL) to improve machine control across multiple industries, and the automotive industry is one of the prime examples. Monte Carlo Tree Search (MCTS) has emerged and proven powerful in decision-making games, even without understanding the rules. In this study, multibody system dynamics (MSD) control is first modeled as a Markov Decision Process and solved with Monte Carlo Tree Search. Based on randomized search space exploration, the MCTS framework builds a selective search tree by repeatedly applying a Monte Carlo rollout at each child node. However, without a library of available choices, deciding among the many possibilities for agent parameters can be intimidating. In addition, the MCTS poses a significant challenge for searching due to the large branching factor. This challenge is typically overcome by appropriate parameter design, search guiding, action reduction, parallelization, and early termination. To address these shortcomings, the overarching goal of this study is to provide needed insight into inverted pendulum controls via vanilla and modified MCTS agents, respectively. A series of reward functions are well-designed according to the control goal, which maps a specific distribution shape of reward bonus and guides the MCTS-based control to maintain the upright position. Numerical examples show that the reward-modified MCTS algorithms significantly improve the control performance and robustness of the default choice of a constant reward that constitutes the vanilla MCTS. The exponentially decaying reward functions perform better than the constant value or polynomial reward functions. Moreover, the exploitation vs. exploration trade-off and discount parameters are carefully tested. The study’s results can guide the research of RL-based MSD users.
Show moreOrganizations and authors
Publication type
Publication format
Article
Parent publication type
Journal
Article type
Original article
Audience
ScientificPeer-reviewed
Peer-ReviewedMINEDU's publication type classification code
A1 Journal article (refereed), original researchPublication channel information
Journal
Publisher
Volume
112
Pages
8363-8391
ISSN
Publication forum
Publication forum level
2
Open access
Open access in the publisher’s service
Yes
Open access of publication channel
Partially open publication channel
Self-archived
No
Other information
Fields of science
Mechanical engineering
Internationality of the publisher
International
International co-publication
Yes
Co-publication with a company
No
DOI
10.1007/s11071-024-09509-8
The publication is included in the Ministry of Education and Culture’s Publication data collection
Yes